

# Advancing GMP-Compliant Lentiviral Vector Manufacturing Enhancers for Cost-Effective Production of Anti-Cancer Cell Therapies

Duration: 11/1/2024 to 10/31/2027

## Biomanufacturing Enhancement

Researchers are developing small molecules to enhance the production of Lentivirus (LV), a crucial component in the manufacture of CAR T cell cancer therapies. This manufacturing enhancement will help mitigate the high costs and inefficiencies in current LV manufacturing processes.

1

BioCanRx Funded  
Core Facility

**The Ottawa Hospital's  
Biotherapeutics  
Manufacturing Centre**

Project value:

**\$1,521,129**

BioCanRx Contribution:  
**\$732,783**

Biotherapeutic/  
Technology:

**Small molecules &  
biomanufacturing  
enhancement**

### Key Investigators:

Project Lead:

**Dr. Jean-Simon  
Diallo**

**Dr. Christopher  
Boddy**

**Dr. Jeffrey Smith**

**Dr. Jennifer Quizzi**



1

Partners



## About the project:

The research team aims to enhance the production of Lentivirus (LV), a crucial component in CAR T cancer therapies. CAR T therapy shows great promise in treating cancer, but its high cost is largely due to the complex and inefficient processes involved in producing LV. To address this, the team will test next-generation Viral Sensitizers (Gen 2.0 VSEs)—simple additives that can significantly boost LV production efficiency. Their project focuses on four key milestones: 1. Optimizing Gen 2.0 VSE Formulation: identification

and validation of new VSEs that improve LV production in different cell systems, essential for large-scale manufacturing. 2. Developing Analytical Methods: creating tests to monitor and measure VSEs during LV production, ensuring removal at the final stage. 3. Toxicological Evaluation: compilation of safety data to confirm that Gen 2.0 VSEs are safe for use to make LV destined for human therapy. 4. Establishing GMP-compliant Manufacturing: development of a scalable, high-quality process for producing Gen 2.0 VSEs, making

them suitable for clinical applications. By improving LV production and reducing costs, our project aims to make CAR T cell therapies more accessible. The innovative use of VSEs as simple, effective additives not only strengthens Canada's position in biomanufacturing but also has the potential to significantly impact the global biotechnology industry.



-  Research
-  Virus Manufacturing
-  Cell Manufacturing
-  Clinical Trial Site
-  Industry Collaborator
-  Core Facility (research services)
-  Non-profit/Governmental/  
Patient/End-User Group

#### Research:

Ottawa Hospital Research Institute, Ottawa, ON, Dr. Jean-Simon Diallo

University of Ottawa, Ottawa, ON, Dr. Christopher Boddy

Carleton University, Ottawa, ON, Dr. Jeffrey Smith

#### Industry partner:

Virica Biotech, Ottawa, ON, Dr. JonDavid de Jong

#### Virus manufacturing:

The Ottawa Hospital's Biotherapeutics Manufacturing Centre, Ottawa, ON, Dr. Jennifer Quizi

#### Partner:

**Virica Biotech**

**Total Pledged Partner Contribution:**  
**\$788,346**

**Total Pledged Matched Contributions:**  
**\$788,346**

#### Key Deliverables

1. A Gen 2.0 VSE formulation, increasing lentivirus (LV) yields at least 2x post-purification
2. HPLC and mass spectrometry-based assays for detecting and quantifying Gen 2.0 VSEs in the bioprocess including LOD and LLOQ
3. A comprehensive toxicological information package for selected Gen 2 VSE
4. Large-scale manufacturing and GMP clinical-grade batch of selected Gen 2.0 VSE
5. State of technology readiness to implement the developed Gen 2.0 VSE technology at the OHRI BMC to produce LV in GMP for Canadian CAR T / CAR-NK trials

**The power to kill cancer lies within us. Let's tell our bodies how.**