

Enabling Studies for a First-in-Human Clinical Trial of BCMA-directed TAC-T Cells

Duration: 11/1/2024 to 4/1/2026

Targeted Cancer:

Multiple myeloma

Researchers are developing BCMA-directed TAC-T cells for the treatment of multiple myeloma. This therapeutic promises to be better tolerated by patients, reducing the cost and toxicity of cell therapy and potentially lengthening remission.

Project value:

\$2,894,729

BioCanRx Contribution: **\$766,997**

Biotherapeutic:
Adoptive Cell Therapy

Key Investigators:

Project Lead:
Dr. Jennifer Quizzi

Dr. Jean-Sébastien Delisle

Dr. Jonathan Bramson

1
BioCanRx Funded Core Facility

The Ottawa Hospital's Biotherapeutics Manufacturing Centre

11
Partners

 The Ottawa Hospital Research Institute | L'Hôpital d'Ottawa Institut de recherche

 CENTRE DE RECHERCHE
CENTRE AFFILIÉ À L'UNIVERSITÉ DE MONTRÉAL

 Center for Commercialisation of Cancer IMMUNOTHERAPY

 Centre d'excellence en thérapie cellulaire
Centre affilié à l'Université de Montréal

 Canadian Cancer Trials Group | Groupe canadien des essais sur le cancer

 Juravinski Hospital and Cancer Centre
HAMILTON HEALTH SCIENCES

 The Ottawa Hospital Research Institute | L'Hôpital d'Ottawa Institut de recherche

About the project:

A promising new treatment strategy has emerged where white blood cells are removed from patients with multiple myeloma and modified in the laboratory to augment the white blood cells' ability to attack myeloma tumors. The modified white blood cells are administered back to the patient where they can mediate destruction of the myeloma leading to long-term remission of the disease and reduced treatment frequency. Two such white blood cell therapies are approved by Health Canada (ide-cel, ciltacel). Enthusiasm for the approved cell therapies has been

tempered by severe toxicities, high cost of treatment and a variable duration of remission. This research team has developed a novel form of the modified white blood cells, called T cell antigen coupler (TAC) receptor-engineered T cell (TAC T cell), which promises to be better tolerated by the patient. The team hypothesizes that the TAC T cells will offer patients a therapeutic option with reduced toxicity and provide an option for patients who cannot receive the approved white blood cell therapies. To test this hypothesis, the team has developed the "TACtful" early-phase

clinical trial which will be led by the Canadian Cancer Trials Group, and will involve clinics in Montreal, Ottawa, Hamilton and Calgary. With the BioCanRx funding, they will produce the clinical-grade reagents that are required to modify the white blood cells, develop a protocol for producing the clinical-grade modified white blood cells and prepare the documentation for approval to test this novel therapy in humans. These critical steps must be completed to deliver this promising new treatment to myeloma patients in Canada.

Partners:

C3i/CETC
 Canadian Cancer Trials Group
 Juravinski Research Institute
 Kingston Health Sciences Centre
 Lonza
 Myeloma Canada/
 Leukemia and Lymphoma Society
 Queen's University
 Samuel Family Foundation
 The Ottawa Hospital's Biotherapeutics
 Manufacturing Centre
 Triumvira Immunologics

Total Pledged Partner Contribution: \$1,278,810

Total Pledged Matched Contributions: \$1,278,810

Key Deliverable

1. GMP BCMA TAC Lentivirus manufacture
2. Developed GMP protocol for manufacturing autologous BCMA TAC-T cell products
3. Safety and pharmacokinetic data sets for BCMA TAC-T cell products manufactured
4. CTA Submission (including CMC documents and Investigator Brochure): The ultimate deliverable will be the successful filing of the TACtful CTA to Health Canada

The power to kill cancer lies within us. Let's tell our bodies how.